Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis.

Identifieur interne : 001844 ( Main/Exploration ); précédent : 001843; suivant : 001845

Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis.

Auteurs : Alfredo J. Ibá Ez [Allemagne] ; Judith Scharte ; Philipp Bones ; Alexander Pirkl ; Stefan Meldau ; Ian T. Baldwin ; Franz Hillenkamp ; Engelbert Weis ; Klaus Dreisewerd

Source :

RBID : pubmed:20534155

Abstract

BACKGROUND

Successful defence of tobacco plants against attack from the oomycete Phytophthora nicotianae includes a type of local programmed cell death called the hypersensitive response. Complex and not completely understood signaling processes are required to mediate the development of this defence in the infected tissue. Here, we demonstrate that different families of metabolites can be monitored in small pieces of infected, mechanically-stressed, and healthy tobacco leaves using direct infrared laser desorption ionization orthogonal time-of-flight mass spectrometry. The defence response was monitored for 1 - 9 hours post infection.

RESULTS

Infrared laser desorption ionization orthogonal time-of-flight mass spectrometry allows rapid and simultaneous detection in both negative and positive ion mode of a wide range of naturally occurring primary and secondary metabolites. An unsupervised principal component analysis was employed to identify correlations between changes in metabolite expression (obtained at different times and sample treatment conditions) and the overall defence response.A one-dimensional projection of the principal components 1 and 2 obtained from positive ion mode spectra was used to generate a Biological Response Index (BRI). The BRI obtained for each sample treatment was compared with the number of dead cells found in the respective tissue. The high correlation between these two values suggested that the BRI provides a rapid assessment of the plant response against the pathogen infection. Evaluation of the loading plots of the principal components (1 and 2) reveals a correlation among three metabolic cascades and the defence response generated in infected leaves. Analysis of selected phytohormones by liquid chromatography electrospray ionization mass spectrometry verified our findings.

CONCLUSION

The described methodology allows for rapid assessment of infection-specific changes in the plant metabolism, in particular of phenolics, alkaloids, oxylipins, and carbohydrates. Moreover, potential novel biomarkers can be detected and used to predict the quality of plant infections.


DOI: 10.1186/1746-4811-6-14
PubMed: 20534155
PubMed Central: PMC2904756


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis.</title>
<author>
<name sortKey="Iba Ez, Alfredo J" sort="Iba Ez, Alfredo J" uniqKey="Iba Ez A" first="Alfredo J" last="Ibá Ez">Alfredo J. Ibá Ez</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str, 31, D-48149 Münster, Germany. dreisew@uni-muenster.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str, 31, D-48149 Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scharte, Judith" sort="Scharte, Judith" uniqKey="Scharte J" first="Judith" last="Scharte">Judith Scharte</name>
</author>
<author>
<name sortKey="Bones, Philipp" sort="Bones, Philipp" uniqKey="Bones P" first="Philipp" last="Bones">Philipp Bones</name>
</author>
<author>
<name sortKey="Pirkl, Alexander" sort="Pirkl, Alexander" uniqKey="Pirkl A" first="Alexander" last="Pirkl">Alexander Pirkl</name>
</author>
<author>
<name sortKey="Meldau, Stefan" sort="Meldau, Stefan" uniqKey="Meldau S" first="Stefan" last="Meldau">Stefan Meldau</name>
</author>
<author>
<name sortKey="Baldwin, Ian T" sort="Baldwin, Ian T" uniqKey="Baldwin I" first="Ian T" last="Baldwin">Ian T. Baldwin</name>
</author>
<author>
<name sortKey="Hillenkamp, Franz" sort="Hillenkamp, Franz" uniqKey="Hillenkamp F" first="Franz" last="Hillenkamp">Franz Hillenkamp</name>
</author>
<author>
<name sortKey="Weis, Engelbert" sort="Weis, Engelbert" uniqKey="Weis E" first="Engelbert" last="Weis">Engelbert Weis</name>
</author>
<author>
<name sortKey="Dreisewerd, Klaus" sort="Dreisewerd, Klaus" uniqKey="Dreisewerd K" first="Klaus" last="Dreisewerd">Klaus Dreisewerd</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20534155</idno>
<idno type="pmid">20534155</idno>
<idno type="doi">10.1186/1746-4811-6-14</idno>
<idno type="pmc">PMC2904756</idno>
<idno type="wicri:Area/Main/Corpus">001894</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001894</idno>
<idno type="wicri:Area/Main/Curation">001894</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001894</idno>
<idno type="wicri:Area/Main/Exploration">001894</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis.</title>
<author>
<name sortKey="Iba Ez, Alfredo J" sort="Iba Ez, Alfredo J" uniqKey="Iba Ez A" first="Alfredo J" last="Ibá Ez">Alfredo J. Ibá Ez</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str, 31, D-48149 Münster, Germany. dreisew@uni-muenster.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str, 31, D-48149 Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scharte, Judith" sort="Scharte, Judith" uniqKey="Scharte J" first="Judith" last="Scharte">Judith Scharte</name>
</author>
<author>
<name sortKey="Bones, Philipp" sort="Bones, Philipp" uniqKey="Bones P" first="Philipp" last="Bones">Philipp Bones</name>
</author>
<author>
<name sortKey="Pirkl, Alexander" sort="Pirkl, Alexander" uniqKey="Pirkl A" first="Alexander" last="Pirkl">Alexander Pirkl</name>
</author>
<author>
<name sortKey="Meldau, Stefan" sort="Meldau, Stefan" uniqKey="Meldau S" first="Stefan" last="Meldau">Stefan Meldau</name>
</author>
<author>
<name sortKey="Baldwin, Ian T" sort="Baldwin, Ian T" uniqKey="Baldwin I" first="Ian T" last="Baldwin">Ian T. Baldwin</name>
</author>
<author>
<name sortKey="Hillenkamp, Franz" sort="Hillenkamp, Franz" uniqKey="Hillenkamp F" first="Franz" last="Hillenkamp">Franz Hillenkamp</name>
</author>
<author>
<name sortKey="Weis, Engelbert" sort="Weis, Engelbert" uniqKey="Weis E" first="Engelbert" last="Weis">Engelbert Weis</name>
</author>
<author>
<name sortKey="Dreisewerd, Klaus" sort="Dreisewerd, Klaus" uniqKey="Dreisewerd K" first="Klaus" last="Dreisewerd">Klaus Dreisewerd</name>
</author>
</analytic>
<series>
<title level="j">Plant methods</title>
<idno type="eISSN">1746-4811</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Successful defence of tobacco plants against attack from the oomycete Phytophthora nicotianae includes a type of local programmed cell death called the hypersensitive response. Complex and not completely understood signaling processes are required to mediate the development of this defence in the infected tissue. Here, we demonstrate that different families of metabolites can be monitored in small pieces of infected, mechanically-stressed, and healthy tobacco leaves using direct infrared laser desorption ionization orthogonal time-of-flight mass spectrometry. The defence response was monitored for 1 - 9 hours post infection.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Infrared laser desorption ionization orthogonal time-of-flight mass spectrometry allows rapid and simultaneous detection in both negative and positive ion mode of a wide range of naturally occurring primary and secondary metabolites. An unsupervised principal component analysis was employed to identify correlations between changes in metabolite expression (obtained at different times and sample treatment conditions) and the overall defence response.A one-dimensional projection of the principal components 1 and 2 obtained from positive ion mode spectra was used to generate a Biological Response Index (BRI). The BRI obtained for each sample treatment was compared with the number of dead cells found in the respective tissue. The high correlation between these two values suggested that the BRI provides a rapid assessment of the plant response against the pathogen infection. Evaluation of the loading plots of the principal components (1 and 2) reveals a correlation among three metabolic cascades and the defence response generated in infected leaves. Analysis of selected phytohormones by liquid chromatography electrospray ionization mass spectrometry verified our findings.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The described methodology allows for rapid assessment of infection-specific changes in the plant metabolism, in particular of phenolics, alkaloids, oxylipins, and carbohydrates. Moreover, potential novel biomarkers can be detected and used to predict the quality of plant infections.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">20534155</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1746-4811</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Plant methods</Title>
<ISOAbbreviation>Plant Methods</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>14</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1746-4811-6-14</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Successful defence of tobacco plants against attack from the oomycete Phytophthora nicotianae includes a type of local programmed cell death called the hypersensitive response. Complex and not completely understood signaling processes are required to mediate the development of this defence in the infected tissue. Here, we demonstrate that different families of metabolites can be monitored in small pieces of infected, mechanically-stressed, and healthy tobacco leaves using direct infrared laser desorption ionization orthogonal time-of-flight mass spectrometry. The defence response was monitored for 1 - 9 hours post infection.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Infrared laser desorption ionization orthogonal time-of-flight mass spectrometry allows rapid and simultaneous detection in both negative and positive ion mode of a wide range of naturally occurring primary and secondary metabolites. An unsupervised principal component analysis was employed to identify correlations between changes in metabolite expression (obtained at different times and sample treatment conditions) and the overall defence response.A one-dimensional projection of the principal components 1 and 2 obtained from positive ion mode spectra was used to generate a Biological Response Index (BRI). The BRI obtained for each sample treatment was compared with the number of dead cells found in the respective tissue. The high correlation between these two values suggested that the BRI provides a rapid assessment of the plant response against the pathogen infection. Evaluation of the loading plots of the principal components (1 and 2) reveals a correlation among three metabolic cascades and the defence response generated in infected leaves. Analysis of selected phytohormones by liquid chromatography electrospray ionization mass spectrometry verified our findings.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The described methodology allows for rapid assessment of infection-specific changes in the plant metabolism, in particular of phenolics, alkaloids, oxylipins, and carbohydrates. Moreover, potential novel biomarkers can be detected and used to predict the quality of plant infections.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ibáñez</LastName>
<ForeName>Alfredo J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Institute of Medical Physics and Biophysics, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str, 31, D-48149 Münster, Germany. dreisew@uni-muenster.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scharte</LastName>
<ForeName>Judith</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bones</LastName>
<ForeName>Philipp</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pirkl</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meldau</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baldwin</LastName>
<ForeName>Ian T</ForeName>
<Initials>IT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hillenkamp</LastName>
<ForeName>Franz</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Weis</LastName>
<ForeName>Engelbert</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dreisewerd</LastName>
<ForeName>Klaus</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Methods</MedlineTA>
<NlmUniqueID>101245798</NlmUniqueID>
<ISSNLinking>1746-4811</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>06</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20534155</ArticleId>
<ArticleId IdType="pii">1746-4811-6-14</ArticleId>
<ArticleId IdType="doi">10.1186/1746-4811-6-14</ArticleId>
<ArticleId IdType="pmc">PMC2904756</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Plant Sci. 1999 Dec;4(12):472-478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10562731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Oct;44(3):429-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11199399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):843-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2001 Aug;49(8):3553-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11513627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1999;37:285-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1449-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jan;128(1):201-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11788766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jan;7(1):41-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11804826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2723-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 2002 Dec;65(12):1909-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):760-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Folia Parasitol (Praha). 2003 Mar;50(1):3-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12735718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Aug;6(4):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10552-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12874387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Dec 26;278(52):52834-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2003;17(22):2508-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14608621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):441-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Aug;7(4):449-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Sep 18;70(6):879-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1525827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(3):439-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15469501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:165-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jul;138(3):1516-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:229-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Jul;224(2):246-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Mar;60(5):699-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16649107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1970 Jun;45(6):691-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(6):1073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16805738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Nov;47(11):1509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jan;29(1):59-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17086753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(3):552-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2007 Mar 15;79(6):2463-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17305311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(6):1397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17317674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2007 Jun 15;79(12):4514-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17500536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2007 Jul;14(Pt 4):382-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007 Jul 06;7:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17612410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2007 Sep 1;79(17):6575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17665874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Oct 1;43(7):995-1022</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Nov;20(11):1346-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17977146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2008 Jan 15;80(2):407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18088102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2008 May;22(10):1503-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18421763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Naturforsch C. 2008 May-Jun;63(5-6):313-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2008 Oct 1;80(19):7576-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18767869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Mass Spectrom. 2008 Dec;19(12):1841-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18835726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Sep;9(5):661-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1408-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19136568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(3):e4697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19277115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2009 Apr 15;81(8):2921-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19301914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2009 Apr 24;5:4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19393072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 May;9(10):2622-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19415667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jun;14(6):310-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2009 Sep;70(13-14):1511-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19555983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2010 Jan;42(1):39-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19643201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(5):907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19732382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2009 Oct 15;81(20):8265-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19824712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jan;33(1):104-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19895400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2009 Nov 25;5:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19939243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Apr;97(3):424-430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Nov;112(3):997-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8938408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Jan 23;1389(3):222-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9512651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1571-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Münster</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Münster</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Baldwin, Ian T" sort="Baldwin, Ian T" uniqKey="Baldwin I" first="Ian T" last="Baldwin">Ian T. Baldwin</name>
<name sortKey="Bones, Philipp" sort="Bones, Philipp" uniqKey="Bones P" first="Philipp" last="Bones">Philipp Bones</name>
<name sortKey="Dreisewerd, Klaus" sort="Dreisewerd, Klaus" uniqKey="Dreisewerd K" first="Klaus" last="Dreisewerd">Klaus Dreisewerd</name>
<name sortKey="Hillenkamp, Franz" sort="Hillenkamp, Franz" uniqKey="Hillenkamp F" first="Franz" last="Hillenkamp">Franz Hillenkamp</name>
<name sortKey="Meldau, Stefan" sort="Meldau, Stefan" uniqKey="Meldau S" first="Stefan" last="Meldau">Stefan Meldau</name>
<name sortKey="Pirkl, Alexander" sort="Pirkl, Alexander" uniqKey="Pirkl A" first="Alexander" last="Pirkl">Alexander Pirkl</name>
<name sortKey="Scharte, Judith" sort="Scharte, Judith" uniqKey="Scharte J" first="Judith" last="Scharte">Judith Scharte</name>
<name sortKey="Weis, Engelbert" sort="Weis, Engelbert" uniqKey="Weis E" first="Engelbert" last="Weis">Engelbert Weis</name>
</noCountry>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Iba Ez, Alfredo J" sort="Iba Ez, Alfredo J" uniqKey="Iba Ez A" first="Alfredo J" last="Ibá Ez">Alfredo J. Ibá Ez</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001844 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001844 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20534155
   |texte=   Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20534155" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024